Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22275458

RESUMEN

Covid-19 has caused more than 1 million deaths in the US, including at least 1,204 deaths among children and young people (CYP) aged 0-19 years, with 796 occurring in the one year period April 1, 2021 - March 31, 2022. Deaths among US CYP are rare in general, and so we argue here that the mortality burden of Covid-19 in CYP is best understood in the context of all other causes of CYP death. Using publicly available data from CDC WONDER on NCHSs 113 Selected Causes of Death, and comparing to mortality in 2019, the immediate pre-pandemic period, we find that Covid-19 mortality is among the 10 leading causes of death in CYP aged 0-19 years in the US, ranking 8th among all causes of deaths, 5th in disease-related causes of deaths (excluding accidents, assault and suicide), and 1st in deaths caused by infectious or respiratory diseases. Covid-19 deaths constitute 2.3% of the 10 leading causes of death in this age group. Covid-19 caused substantially more deaths in CYP than major vaccine-preventable diseases did historically in the period before vaccines became available. Various factors including underreporting and Covid-19s role as a contributing cause of death from other diseases mean that our estimates may understate the true mortality burden of Covid-19. Our findings underscore the public health relevance of Covid-19 to CYP. In the likely future context of sustained SARS-CoV-2 circulation, pharmaceutical and non-pharmaceutical interventions will continue to play an important role in limiting transmission of the virus in CYP and mitigating severe disease.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21267606

RESUMEN

The Delta variant of concern of SARS-CoV-2 has spread globally causing large outbreaks and resurgences of COVID-19 cases1-3. The emergence of Delta in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions4,5. Here we analyse 52,992 Delta genomes from England in combination with 93,649 global genomes to reconstruct the emergence of Delta, and quantify its introduction to and regional dissemination across England, in the context of changing travel and social restrictions. Through analysis of human movement, contact tracing, and virus genomic data, we find that the focus of geographic expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced >1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers from India reduced onward transmission from importations; however the transmission chains that later dominated the Delta wave in England had been already seeded before restrictions were introduced. In England, increasing inter-regional travel drove Deltas nationwide dissemination, with some cities receiving >2,000 observable lineage introductions from other regions. Subsequently, increased levels of local population mixing, not the number of importations, was associated with faster relative growth of Delta. Among US states, we find that regions that previously experienced large waves also had faster Delta growth rates, and a model including interactions between immunity and human behaviour could accurately predict the rise of Delta there. Deltas invasion dynamics depended on fine scale spatial heterogeneity in immunity and contact patterns and our findings will inform optimal spatial interventions to reduce transmission of current and future VOCs such as Omicron.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21266018

RESUMEN

BackgroundAchieving vaccine-derived herd immunity depends on public acceptance of vaccination, which in turn relies on peoples understanding of its risks and benefits. The fundamental objective of public health messaging on vaccines is therefore the clear and concise communication of often complex information, and increasingly the countering of misinformation. The primary outlet shaping societal understanding is the mainstream online news media. There was widespread media coverage of the multiple vaccines that were rapidly developed in response to COVID-19. We studied vaccine coverage on the front pages of mainstream online news, using text-mining analysis to quantify the amount of information and sentiment polarization of vaccine coverage delivered to readers. MethodsWe analyzed 28 million articles from 172 major news sources, across 11 countries between July 2015 and April 2021. We employed keyword-based frequency analysis to estimate the proportion of coverage given to vaccines in our dataset. We performed topic detection using BERTopic and Named Entity Recognition to identify the leading subjects and actors mentioned in the context of vaccines. We used the Vader Python module to perform sentiment polarization quantification of all our English-language articles. ResultsWe find that the proportion of headlines mentioning vaccines on the front pages of international major news sites increased from 0.1% to 3.8% with the outbreak of COVID-19. The absolute number of negatively polarized articles increased from a total of 6,698 before the COVID-19 outbreak 2015-2019 compared to 28,552 in 2020-2021. Overall, however, before the COVID-19 pandemic, vaccine coverage was slightly negatively polarized (57% negative) whereas with the outbreak, the coverage was primarily positively polarized (38% negative). ConclusionsBecause of COVID-19, vaccines have risen from a marginal topic to a widely discussed topic on the front pages of major news outlets. Despite a perceived rise in hesitancy, the mainstream online media, i.e. the primary information source to most individuals, has been strongly positive compared to pre-pandemic vaccine news, which was mainly negative. However, the pandemic was accompanied with an order of magnitude increase in vaccine news volume that due to pre-pandemic low frequency sampling bias may contribute to a perceived negative sentiment. These results highlight the important interactions between the volume of news and overall polarisation. To the best of our knowledge, our work is the first systematic text mining study of vaccines in the context of COVID-19.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21265731

RESUMEN

The SARS-CoV-2 Gamma variant spread rapidly across Brazil, causing substantial infection and death waves. We use individual-level patient records following hospitalisation with suspected or confirmed COVID-19 to document the extensive shocks in hospital fatality rates that followed Gammas spread across 14 state capitals, and in which more than half of hospitalised patients died over sustained time periods. We show that extensive fluctuations in COVID-19 in-hospital fatality rates also existed prior to Gammas detection, and were largely transient after Gammas detection, subsiding with hospital demand. Using a Bayesian fatality rate model, we find that the geographic and temporal fluctuations in Brazils COVID-19 in-hospital fatality rates are primarily associated with geographic inequities and shortages in healthcare capacity. We project that approximately half of Brazils COVID-19 deaths in hospitals could have been avoided without pre-pandemic geographic inequities and without pandemic healthcare pressure. Our results suggest that investments in healthcare resources, healthcare optimization, and pandemic preparedness are critical to minimize population wide mortality and morbidity caused by highly transmissible and deadly pathogens such as SARS-CoV-2, especially in low- and middle-income countries. NoteThe following manuscript has appeared as Report 46 - Factors driving extensive spatial and temporal fluctuations in COVID-19 fatality rates in Brazilian hospitals at https://spiral.imperial.ac.uk:8443/handle/10044/1/91875. One sentence summaryCOVID-19 in-hospital fatality rates fluctuate dramatically in Brazil, and these fluctuations are primarily associated with geographic inequities and shortages in healthcare capacity.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21262393

RESUMEN

Genomic sequencing provides critical information to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments and vaccines, and guide public health responses. To investigate the spatiotemporal heterogeneity in the global SARS-CoV-2 genomic surveillance, we estimated the impact of sequencing intensity and turnaround times (TAT) on variant detection in 167 countries. Most countries submit genomes >21 days after sample collection, and 77% of low and middle income countries sequenced <0.5% of their cases. We found that sequencing at least 0.5% of the cases, with a TAT <21 days, could be a benchmark for SARS-CoV-2 genomic surveillance efforts. Socioeconomic inequalities substantially impact our ability to quickly detect SARS-CoV-2 variants, and undermine the global pandemic preparedness. One-Sentence SummarySocioeconomic inequalities impacted the SARS-CoV-2 genomic surveillance, and undermined the global pandemic preparedness.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21261148

RESUMEN

High throughput sequencing enables rapid genome sequencing during infectious disease outbreaks and provides an opportunity to quantify the evolutionary dynamics of pathogens in near real-time. One difficulty of undertaking evolutionary analyses over short timescales is the dependency of the inferred evolutionary parameters on the timespan of observation. Here, we characterise the molecular evolutionary dynamics of SARS-CoV-2 and 2009 pandemic H1N1 (pH1N1) influenza during the first 12 months of their respective pandemics. We use Bayesian phylogenetic methods to estimate the dates of emergence, evolutionary rates, and growth rates of SARS-CoV-2 and pH1N1 over time and investigate how varying sampling window and dataset sizes affects the accuracy of parameter estimation. We further use a generalised McDonald-Kreitman test to estimate the number of segregating non-neutral sites over time. We find that the inferred evolutionary parameters for both pandemics are time-dependent, and that the inferred rates of SARS-CoV-2 and pH1N1 decline by [~]50% and [~]100%, respectively, over the course of one year. After at least 4 months since the start of sequence sampling, inferred growth rates and emergence dates remain relatively stable and can be inferred reliably using a logistic growth coalescent model. We show that the time-dependency of the mean substitution rate is due to elevated substitution rates at terminal branches which are 2-4 times higher than those of internal branches for both viruses. The elevated rate at terminal branches is strongly correlated with an increasing number of segregating non-neutral sites, demonstrating the role of purifying selection in generating the time-dependency of evolutionary parameters during pandemics.

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21259405

RESUMEN

India has seen a surge of SARS-CoV-2 infections and deaths in early part of 2021, despite having controlled the epidemic during 2020. Building on a two-strain, semi-mechanistic model that synthesizes mortality and genomic data, we find evidence that altered epidemiological properties of B.1.617.2 (Delta) variant play an important role in this resurgence in India. Under all scenarios of immune evasion, we find an increased transmissibility advantage for B.1617.2 against all previously circulating strains. Using an extended SIR model accounting for reinfections and wanning immunity, we produce evidence in support of how early public interventions in March 2021 would have helped to control transmission in the country. We argue that enhanced genomic surveillance along with constant assessment of risk associated with increased transmission is critical for pandemic responsiveness. One Sentence SummaryAltered epidemiological characteristics of B.1.617.2 and delayed public health interventions contributed to the resurgence of SARS-CoV-2 in India from February to May 2021.

8.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21258817

RESUMEN

Mask-wearing has been a controversial measure to control the COVID-19 pandemic. While masks are known to substantially reduce disease transmission in healthcare settings [1-3], studies in community settings report inconsistent results [4-6]. Investigating the inconsistency within epidemiological studies, we find that a commonly used proxy, government mask mandates, does not correlate with large increases in mask-wearing in our window of analysis. We thus analyse the effect of mask-wearing on transmission instead, drawing on several datasets covering 92 regions on 6 continents, including the largest survey of individual-level wearing behaviour (n=20 million) [7]. Using a hierarchical Bayesian model, we estimate the effect of both mask-wearing and mask-mandates on transmission by linking wearing levels (or mandates) to reported cases in each region, adjusting for mobility and non-pharmaceutical interventions. We assess the robustness of our results in 123 experiments spanning 22 sensitivity analyses. Across these analyses, we find that an entire population wearing masks in public leads to a median reduction in the reproduction number R of 25.8%, with 95% of the medians between 22.2% and 30.9%. In our window of analysis, the median reduction in R associated with the wearing level observed in each region was 20.4% [2.0%, 23.3%]1. We do not find evidence that mandating mask-wearing reduces transmission. Our results suggest that mask-wearing is strongly affected by factors other than mandates. We establish the effectiveness of mass mask-wearing, and highlight that wearing data, not mandate data, are necessary to infer this effect.

9.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21258647

RESUMEN

While seasonal variation has a known influence on the transmission of several respiratory viral infections, its role in SARS-CoV-2 transmission remains unclear. As previous analyses have not accounted for the implementation of non-pharmaceutical interventions (NPIs) in the first year of the pandemic, they may yield biased estimates of seasonal effects. Building on two state-of-the-art observational models and datasets, we adapt a fully Bayesian method for estimating the association between seasonality and transmission in 143 temperate European regions. We find strong seasonal patterns, consistent with a reduction in the time-variable Rt of 42.1% (95% CI: 24.7% - 53.4%) from the peak of winter to the peak of summer. These results imply that the seasonality of SARS-CoV-2 transmission is comparable in magnitude to the most effective individual NPIs but less than the combined effect of multiple interventions.

10.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21258076

RESUMEN

Delhi, the national capital of India, has experienced multiple SARS-CoV-2 outbreaks in 2020 and reached a population seropositivity of over 50% by 2021. During April 2021, the city became overwhelmed by COVID-19 cases and fatalities, as a new variant B.1.617.2 (Delta) replaced B.1.1.7 (Alpha). A Bayesian model explains the growth advantage of Delta through a combination of increased transmissibility and partial reduction of immunity elicited by prior infection (median estimates; x1.5-fold, 20% reduction). Seropositivity of an employee and family cohort increased from 42% to 86% between March and July 2021, with 27% reinfections, as judged by increased antibody concentration after previous decline. The likely high transmissibility and partial evasion of immunity by the Delta variant contributed to an overwhelming surge in Delhi. One-Sentence SummaryDelhi experienced an overwhelming surge of COVID-19 cases and fatalities peaking in May 2021 as the highly transmissible and immune evasive Delta variant replaced the Alpha variant.

11.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-443253

RESUMEN

The SARS-CoV-2 B.1.617.2 (Delta) variant was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha). In vitro, B.1.617.2 is 6-fold less sensitive to serum neutralising antibodies from recovered individuals, and 8-fold less sensitive to vaccine-elicited antibodies as compared to wild type Wuhan-1 bearing D614G. Serum neutralising titres against B.1.617.2 were lower in ChAdOx-1 versus BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies against the receptor binding domain (RBD) and N-terminal domain (NTD), in particular to the clinically approved bamlavinimab and imdevimab monoclonal antibodies. B.1.617.2 demonstrated higher replication efficiency in both airway organoid and human airway epithelial systems as compared to B.1.1.7, associated with B.1.617.2 spike being in a predominantly cleaved state compared to B.1.1.7. Additionally we observed that B.1.617.2 had higher replication and spike mediated entry as compared to B.1.617.1, potentially explaining B.1.617.2 dominance. In an analysis of over 130 SARS-CoV-2 infected healthcare workers across three centres in India during a period of mixed lineage circulation, we observed substantially reduced ChAdOx-1 vaccine efficacy against B.1.617.2 relative to non-B.1.617.2. Compromised vaccine efficacy against the highly fit and immune evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era.

12.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21254330

RESUMEN

As European governments face resurging waves of COVID-19, non-pharmaceutical interventions (NPIs) continue to be the primary tool for infection control. However, updated estimates of their relative effectiveness have been absent for Europes second wave, largely due to a lack of collated data that considers the increased subnational variation and diversity of NPIs. We collect the largest dataset of NPI implementation dates in Europe, spanning 114 subnational areas in 7 countries, with a systematic categorisation of interventions tailored to the second wave. Using a hierarchical Bayesian transmission model, we estimate the effectiveness of 17 NPIs from local case and death data. We manually validate the data, address limitations in modelling from previous studies, and extensively test the robustness of our estimates. The combined effect of all NPIs was smaller relative to estimates from the first half of 2020, indicating the strong influence of safety measures and individual protective behaviours--such as distancing--that persisted after the first wave. Closing specific businesses was highly effective. Gathering restrictions were highly effective but only for the strictest limits. We find smaller effects for closing educational institutions compared to the first wave, suggesting that safer operation of schools was possible with a set of stringent safety measures including testing and tracing, preventing mixing, and smaller classes. These results underscore that effectiveness estimates from the early stage of an epidemic are measured relative to pre-pandemic behaviour. Updated estimates are required to inform policy in an ongoing pandemic.

13.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21252554

RESUMEN

Cases of SARS-CoV-2 infection in Manaus, Brazil, resurged in late 2020, despite high levels of previous infection there. Through genome sequencing of viruses sampled in Manaus between November 2020 and January 2021, we identified the emergence and circulation of a novel SARS-CoV-2 variant of concern, lineage P.1, that acquired 17 mutations, including a trio in the spike protein (K417T, E484K and N501Y) associated with increased binding to the human ACE2 receptor. Molecular clock analysis shows that P.1 emergence occurred around early November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.4-2.2 times more transmissible and 25-61% more likely to evade protective immunity elicited by previous infection with non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness. One-Sentence SummaryWe report the evolution and emergence of a SARS-CoV-2 lineage of concern associated with rapid transmission in Manaus.

14.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21252277

RESUMEN

ObjectiveMeasure the effects of the Tier system on the COVID-19 pandemic in the UK between the first and second national lockdowns, before the emergence of the B.1.1.7 variant of concern. DesignModelling study combining estimates of the real-time reproduction number Rt (derived from UK case, death and serological survey data) with publicly available data on regional non-pharmaceutical interventions. We fit a Bayesian hierarchical model with latent factors using these quantities, to account for broader national trends in addition to subnational effects from Tiers. SettingThe UK at Lower Tier Local Authority (LTLA) level. Primary and secondary outcome measuresReduction in real-time reproduction number Rt. ResultsNationally, transmission increased between July and late September, regional differences notwithstanding. Immediately prior to the introduction of the tier system, Rt averaged 1.3 (0.9 - 1.6) across LTLAs, but declined to an average of 1.1 (0.86 - 1.42) two weeks later. Decline in transmission was not solely attributable to Tiers. Tier 1 had negligible effects. Tiers 2 and 3 respectively reduced transmission by 6% (5%-7%) and 23% (21%-25%). 93% of LTLAs would have begun to suppress their epidemics if every LTLA had gone into Tier 3 by the second national lockdown, whereas only 29% did so in reality. ConclusionsThe relatively small effect sizes found in this analysis demonstrate that interventions at least as stringent as Tier 3 are required to suppress transmission, especially considering more transmissible variants, at least until effective vaccination is widespread or much greater population immunity has amassed. Strengths and limitations of this studyO_LIFirst study to measure effects of UK Tier system for SARS-CoV-2 control at national and regional level. C_LIO_LIModel makes minimal assumptions and is primarily data driven. C_LIO_LIInsufficient statistical power to estimate effects of individual interventions that comprise Tiers, or their interaction. C_LIO_LIEstimates show that Tiers 1 and 2 are insufficient to suppress transmission, at least until widespread population immunity has amassed. Emergence of more transmissible variants of concern unfortunately supports this conclusion. C_LI

15.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21249461

RESUMEN

ObjectivesTo determine if there is an association between survival rates in intensive care units (ICU) and occupancy of the unit on the day of admission. DesignNational retrospective observational cohort study during the COVID-19 pandemic. Setting90 English hospital trusts (i.e. groups of hospitals functioning as single operational units). Participants6,686 adults admitted to an ICU in England between 2nd April and 1st December, 2020 (inclusive), with presumed or confirmed COVID-19, for whom data was submitted to the national surveillance programme and met study inclusion criteria. InterventionsN/A Main Outcomes and MeasuresA Bayesian hierarchical approach was used to model the association between hospital trust level (mechanical ventilation compatible) bed occupancy, and in-hospital all-cause mortality. Results were adjusted for unit characteristics (pre-pandemic size), individual patient-level demographic characteristics (age, sex, ethnicity, time-to-ICU admission), and recorded chronic comorbidities (obesity, diabetes, respiratory disease, liver disease, heart disease, hypertension, immunosuppression, neurological disease, renal disease). Results121,151 patient-days were observed, with a mortality rate of 20.8 per 1,000 patient days. Adjusting for patient-level factors, mortality was higher for admissions during periods of high occupancy (>85% occupancy versus the baseline of 45 to 85%) [OR 1.18 (95% posterior credible interval (PCI): 1.00 to 1.38)]. In contrast, mortality was decreased for admissions during periods of low occupancy (<45% relative to the baseline) [OR 0.79 (95% PCI: 0.69 to 0.90)]. Conclusion and RelevanceIncreasing occupancy of beds compatible with mechanical ventilation, a proxy for operational strain, is associated with a higher mortality risk for individuals admitted to ICU. Public health interventions (such as expeditious vaccination programmes and non-pharmaceutical interventions) to control both incidence and prevalence of COVID-19, and therefore keep ICU occupancy low in the context of the pandemic, are necessary to mitigate the impact of this type of resource saturation. O_TEXTBOXSummary Box What is already known on this topicPre-pandemic, higher occupancy of intensive care units was shown to be associated with increased mortality risk. However, there is limited data on the extent to which occupancy levels impacted patient outcomes during the COVID-19 pandemic, especially in light of the mobilisation of significant additional resources. A recent study from Belgium reported a 42% higher mortality during periods of ICU surge capacity deployment, although in the analysis surge capacity was evaluated only as a binary variable, and notably this contradicts earlier results from smaller studies in Australia and Wales, where no association between ICU occupancy and mortality was identified. What this study addsThe results of this study suggest that survival rates for patients with COVID-19 in intensive care settings appears to deteriorate as the occupancy of (surge capacity) beds compatible with mechanical ventilation (a proxy for operational pressure), increases. Moreover, this risk doesnt occur above a specific threshold, but rather appears linear; whereby going from 0% occupancy to 100% occupancy increases risk of mortality by 69% (after adjusting for relevant individual-level factors). Furthermore, risk of mortality based on occupancy on the date of recorded outcome is even higher; OR 2.98 (95% posterior credible interval: 2.33 - 3.83). As such, this national-level cohort study of England provides compelling evidence for a relationship between occupancy and critical care mortality, and highlights the needs for decisive action to control the incidence and prevalence of COVID-19. C_TEXTBOX

16.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20249034

RESUMEN

The SARS-CoV-2 lineage B.1.1.7, now designated Variant of Concern 202012/01 (VOC) by Public Health England, originated in the UK in late Summer to early Autumn 2020. We examine epidemiological evidence for this VOC having a transmission advantage from several perspectives. First, whole genome sequence data collected from community-based diagnostic testing provides an indication of changing prevalence of different genetic variants through time. Phylodynamic modelling additionally indicates that genetic diversity of this lineage has changed in a manner consistent with exponential growth. Second, we find that changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S-gene target failures (SGTF) in community-based diagnostic PCR testing. Third, we examine growth trends in SGTF and non-SGTF case numbers at local area level across England, and show that the VOC has higher transmissibility than non-VOC lineages, even if the VOC has a different latent period or generation time. Available SGTF data indicate a shift in the age composition of reported cases, with a larger share of under 20 year olds among reported VOC than non-VOC cases. Fourth, we assess the association of VOC frequency with independent estimates of the overall SARS-CoV-2 reproduction number through time. Finally, we fit a semi-mechanistic model directly to local VOC and non-VOC case incidence to estimate the reproduction numbers over time for each. There is a consensus among all analyses that the VOC has a substantial transmission advantage, with the estimated difference in reproduction numbers between VOC and non-VOC ranging between 0.4 and 0.7, and the ratio of reproduction numbers varying between 1.4 and 1.8. We note that these estimates of transmission advantage apply to a period where high levels of social distancing were in place in England; extrapolation to other transmission contexts therefore requires caution.

17.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20248813

RESUMEN

BackgroundNon-pharmaceutical interventions such as lockdowns, mask wearing and social distancing have been the primary measures to effectively combat the COVID-19 pandemic. Such measures are highly effective when there is strong population wide adherence which needs to be facilitated by information on the current risks posed by the pandemic alongside a clear exposition of the rules and guidelines in place. Here we address the issue of communication on the pandemic by offering data and analysis of online news media coverage of COVID-19. MethodsWe collected 26 million news articles from the front pages of 172 major online news sources in 11 countries (available at http://sciride.org). Using topic detection we identified COVID-19-related content to quantify the proportion of total coverage pandemic received in 2020. Sentiment analysis tool Vader was employed to stratify the emotional polarity of COVID-19 reporting. Further topic detection and sentiment analysis was performed on COVID-19 articles to reveal the leading themes in pandemic reporting and their respective emotional polarizations. FindingsWe find that COVID-19 coverage accounted for approximately 25% of all front-page online news articles between January and October 2020. Sentiment analysis of English-speaking sources reveals that the overall COVID-19 coverage cannot be simply classified as negative due to the disease subject matter, suggesting a wide heterogeneous reporting of the pandemic. Within this heterogenous coverage, 16% of COVID-19 news articles (or 4% of all English-speaking articles) can be classified as highly negatively polarized, citing issues such as death, fear or crisis. InterpretationThe goal of pandemic public health communication is to increase understanding of distancing rules and maximize the impact of any governmental policy. Our results suggest an information overload in COVID-19 reporting that could risk obscuring effective policy communication. We hope that our data and analysis will inform health communication strategy to minimize the risks of COVID-19 while vaccination regimes are being introduced.

18.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20236661

RESUMEN

We propose a new framework to model the COVID-19 epidemic of the United Kingdom at the level of local authorities. The model fits within a general framework for semi-mechanistic Bayesian models of the epidemic, with some important innovations: we model the proportion of infections that result in reported deaths and cases as random variables. This is in contrast to standard frameworks that model the latent infection as a deterministic function of time varying reproduction number, Rt. The model is tailored and designed to be updated daily based on publicly available data. We envisage the model to be useful for now-casting and short-term projections of the epidemic as well as estimating historical trends. The model fits are available on a public website, https://imperialcollegelondon.github.io/covid19local. The model is currently being used by the Scottish government in their decisions on interventions within Scotland [1, issue 24 to now].

19.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20197376

RESUMEN

Following initial declines, in mid 2020, a resurgence in transmission of novel coronavirus disease (COVID-19) has occurred in the United States and parts of Europe. Despite the wide implementation of non-pharmaceutical interventions, it is still not known how they are impacted by changing contact patterns, age and other demographics. As COVID-19 disease control becomes more localised, understanding the age demographics driving transmission and how these impacts the loosening of interventions such as school reopening is crucial. Considering dynamics for the United States, we analyse aggregated, age-specific mobility trends from more than 10 million individuals and link these mechanistically to age-specific COVID-19 mortality data. In contrast to previous approaches, we link mobility to mortality via age-specific contact patterns and use this rich relationship to reconstruct accurate transmission dynamics. Contrary to anecdotal evidence, we find little support for age-shifts in contact and transmission dynamics over time. We estimate that, until August, 63.4% [60.9%-65.5%] of SARS-CoV-2 infections in the United States originated from adults aged 20-49, while 1.2% [0.8%-1.8%] originated from children aged 0- 9. In areas with continued, community-wide transmission, our transmission model predicts that re-opening kindergartens and elementary schools could facilitate spread and lead to additional COVID-19 attributable deaths over a 90-day period. These findings indicate that targeting interventions to adults aged 20-49 are an important consideration in halting resurgent epidemics and preventing COVID-19-attributable deaths when kindergartens and elementary schools reopen.

20.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20154617

RESUMEN

Knowing COVID-19 epidemiological distributions, such as the time from patient admission to death, is directly relevant to effective primary and secondary care planning, and moreover, the mathematical modelling of the pandemic generally. We determine epidemiological distributions for patients hospitalised with COVID-19 using a large dataset (N = 21,000 - 157,000) from the Brazilian Sistema de Informacao de Vigilancia Epidemiologica da Gripe database. A joint Bayesian subnational model with partial pooling is used to simultaneously describe the 26 states and one federal district of Brazil, and shows significant variation in the mean of the symptom-onset-to-death time, with ranges between 11.2-17.8 days across the different states, and a mean of 15.2 days for Brazil. We find strong evidence in favour of specific probability density function choices: for example, the gamma distribution gives the best fit for onset-to-death and the generalised lognormal for onset-to-hospital-admission. Our results show that epidemiological distributions have considerable geographical variation, and provide the first estimates of these distributions in a low and middle-income setting. At the subnational level, variation in COVID-19 outcome timings are found to be correlated with poverty, deprivation and segregation levels, and weaker correlation is observed for mean age, wealth and urbanicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...